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Generalized Moment Expansion for the Mossbauer Spectrum of Brownian particles
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An algorithm is suggested for the Mossbauer spectrum I(~) of an atom undergoing one-
dimensional Brownian motion in an arbitrary potential. The algorithm reproduces simul-
taneously the low- and high-frequency dependence of I() to a desired accuracy.

PACS numbers: 87.15.By, 76.80.+y

I(w)=
2 Re(Q " ). (2)

The resulting intensities f„and linewidths I'„
(I', = I'/2) are then investigated in terms of mod-
els of the stochastic dynamics assumed for the
atom.

The Mo'ssbauer spectral analysis outlined has
been carried out for a number of proteins con-
taining "Fe at their functional site." The tem-
perature dependence of the Mossbauer data re-
vealed a sudden transition from a confined mo-
tion at low temperatures to a less confined mo-
tion at high temperatures, the transition being
characteristic of the protein and its surroundings.
It is, of course, most desirable to understand

The structural analysis of proteins by nonreso-
nant x-ray scattering has contributed much to bi-
ology. In recent years the accuracy of the scat-
tering data has been enhanced to a degree which
revealed that proteins do not exist in single con-
formations but rather exhibit innate temperature-
dependent conformational distributions. ' These
distributions show a relationship to the functional
states of proteins. Since nonresonant scattering
probes particles on a time scale short compared
to atomic motion, the scattering intensity does
not provide information on the dynamics connect-
ed with conformational transitions. In fact, the
scattering intensity for classical particles is giv-
en by the Debye-Wailer factor

fD~= ((exp(ik x))r~',

where k is the scattering vector and ( ~ ~ )r de-
notes the thermal average. A welcome extension
in this respect is provided by the resonant scat-
tering of y rays at Mo'ssbauer atoms. " The line
shape of the Mossbauer transition yields informa-
tion on the motion of the atom during the lifetime
I' ' of the metastable state. For an analysis the
observed line-shape function I(~) is usually ex-
panded in accordance with the accuracy of the
data in terms of two or three Lorentzians, "

this behavior. Unfortunately, the theoretical
analysis of Mo'ssbauer spectra has been hamp-
ered by the inability of previous methods to de-
termine line shapes for anything but the most
simple models, i.e., jumps on equivalent lattice
sites, 4 ' and Brownian motion in constant and in
harmonic potentials. ' ' Further progress in the
understanding of available Mo'ssbauer spectra re-
quires necessarily a description for potentials
which account better for the complex interactions
in proteins. According to the investigations of
Frauenfelder, Petsko, and Tsernoglu, ' and Aust-
in et gl. ,

' such potentials are of the multistable
type, In this Letter we introduce an algorithm
which yields for one-dimensional Brownian mo-
tion Mossbauer line shapes for essentially arbi-
trary static potentials. For a demonstration the
algorithm will be applied to a bistable potential.

In the case of "Fe resonant scattering the ac-
curacy of the observed line-shape function (2) is
significant only for frequencies between one and
one hundred natural linewidths I' (I' = 7 && 10' s '),
i.e., the observations probe the stochastic mo-
tion of "Fe for times between 1 ns and about 100
ns. One can consider the motion of the atom as
classical, influenced by thermal noise and fric-
tion. In fact, one can safely expect in a dense
matrix like a protein that the motion is in the
strong-friction limit. If we assume the magni-
tude of the thermal noise to increase linearly
with temperature, ' the fluctuation-dissipation the-
orem dictates a temperature-dependent diffusion
coefficient D =DpT The spatial resolution of the
observation by "Fe Mo'ssbauer spectroscopy is
determined by the momentum k=7. 3 A ' of the y
quantum and measures about 0.1 A. The dominant
relaxation frequencies for Brownian processes
on this length scale have values of about 4'D. In
proteins this frequency value should be much
larger than 1 ns '. In fact, molecular-dynamics
simulations" show that local (0.1 A) relaxation
occurs within 10 ps. Hence, only the slow frac-
tion of Brownian processes, e.g. , barrier cross-
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o(co) = P(iv —A.„+I /2) 'lg„(k)l',
n=O

(6)

where A.„&0are the eigenvalues and g„(k) the
Fourier-transformed nonorthogonal eigenfunetions
of L(x). In the case of a, harmonic potential" one
derives A.„=—nD/(x')r a.nd

It.{k)I'=exp(- k'(x'), )(k'(x2), )"/n!.

This exact result will be used to test the suggest-
ed algorithm below.

The proposed algorithm starts from the obser-
vation that the high- and low-frequency expan-
sions

1 ] P2

a(~) - —Z t
gQ) „O ZCO

0((u) - g p „,(- i(u)",
~ ~0 n=O

(7)

can actually be constructed for arbitrary poten-
tials U(x) since the coefficients (generalized mo-
rnents)

l „=(- 1)"fdx exp(ikx) [L(x) —r /2]"

&& exp( —ikx)p, (x)

ings, will contribute to the observed Mo'ssbauer
spectrum. This is the key ideal of the following
treatment. Contrary to conventional moment ex-
pansions which reproduce well the short-time re-
sponse of systems and include long-time effects
by "memory functions" for which no systematic
alogrithm exists, we will describe here the line
shape I(~) in a more balanced way, simultaneous-
ly reproducing the short-time (high-frequency) as
well as the long-time (low-frequency) behavior
adequately.

The Mo'ssbauer line-shape function I(&u) is giv-
nby

I(ur) =(o,I'/2)Re[cr(~)),

o((u) = fdx exp(ikx) [i(u —I.(x) + I /2] '

&& exp(- ikx)P, (x),

where 0, is the resonance absorption cross sec-
tion,

L(x) = S„D[s„+P U'(x)]

the Fokker-Planck operator describing the Brown-
ian motion in a potential U(x) with diffusion coef-
ficient D=DoT, and P~{x) the initial Boltzmann
distribution of the scattering atom, i.e., p, (x)
-exp[- pU(x)]. A spectral expansion of o(+)
yields

s((o) = P f„/(ia)+ I'„).
n=O

One can show that if the amplitudes and linewidths
obey

gf„r„=p. „,
n=O

~=- &„—&, +i, . ~ ~, &„—&,

2N=Ã, + ~„, (10)

then s(&u) reproduces the u dependence of expan-
sions (7) for the coefficients l „, —N, &n &K„-l.
For & &3 Eqs. (10) can be solved algebraically;
for A & 3 one should resort to a representation in
terms of an eigenvalue problem. "

In Fig. 1 we compare for the case of a Brown-
ian motion in a harmonic potential approximate
line-shape functions with the exact solution. For
the parameters chosen the exact expansion (6)
must sum at least ten lines in order to converge
within 1/o error. A termination after the third
term would yield a poor approximation. On the
other hand, the approximate line-shape function
yields an accurate description of the central part
of the line, i.e., that part on which any analysis
of spectral data currently hinges, with only three
Lorentzians reproducing the moments p, , to po
of the exact I(v). The comparison reveals that
the approximation should take into account the
low-frequency moments p. „p „.. . , rather than
the high-frequency moments p„jt.„.. . . The mo-
ment p, carries the total intensity of I{~).Since
only a small number of moments have to be con-
sidered the algorithm proposed does not depend
sensitively on the numerical accuracy of the mo-
ments as would be the case if more extended ex-
pansions would be required. Incidently, the de-

can be evaluated for positive as well as for nega
tive n. The evaluation is straightforward for posi-
tive n. For negative indices one can discretize
the differential operator L (x) fixing x =x„x„.. . ,
and employ a well-known recursive algorithm"
for the inverse of the resulting tridiagonal ma-
trix I. The computational effort of the recursive
scheme grows only linearly with the number of
x,. 's chosen. It can therefore easily be applied to
dimensions of a few thousand. Below a certain
mesh size the p „, e & 0, have been found inde-
pendent of the discretization scheme. The p, „
can, hence, be constructed to include any de-
sired feature of model potential surfaces.

In accordance with the analysis (2) of the experi-
mental data one seeks an approximate s(&u) =o(ro)
of the type

1713



~@TIER~RP VIEWpH~gy&A1 NUMBER 18VOLUME 5

2Q

(a)—In fO

Q

L
cf

O

CL
10
ill
J30

-F00 50 F00
I I1

0
ewidthf natural linefrequency in units o

r ' shapes forn of Mossbauerr line

l'd li ) d(see text)
momen t expansions a

—;ia5
Vl

C3

4&io—

C=iO—

0.0S

1

\

\

0.2k~T/ b

I~O0
0.05 I 0.1

h Mossbauerre depende nceoft e
article in

IG. 2. Temperatu

two-Lorentz ian-line
epres entation

d line). i

tation
po-Loren zi

ntzian- ina three-Loren
(solid line) .

I

0.15 k T(b 0.2

entzian line rep resenta-
is based on the g

).to p (AU, , to po
ates that Rt R tempe

Mossbaue r fac or
aller factor

dThis behavior can eeratures. This
in expansion

es
el by inspecting

1 t lobistable pocase of the
re in the rang

'
h temperatures ' ' tas at hig e

the coefficientsh' h reproducces only e
h "first pas-

F

sc rip tion w ic
of i(7) 's equivale

11 app ie1' d to re-
and

15 al-f
O

SRge im

first- A

(s
y

' es a genera iza '

roduces
r

. ...i..t...pp

(

pas
0~

tW
The comparis

co uc 'the PP
t tions when

the require-
for sl uR

concern,
cular,

the ac-th b
le cur-

t of the algori m

0 rlately f ttedtra are appropria eo'ssbauer spec r
L

'thm pre-trivial application o
e consider t e

otential wein the bistable p em diffusing in
'( x/x, )], —x, -

d,ture dep
t ral line, thei

d tjl 1'Moss bauer factor, an

1714



VOLUME 51, NUMBER 18 PHYSICAL RKVIKW LKTTKRS 31 OcToBER 1983

three-line representation yields I'0(3) identical to
the natural linewidth I"/2. The linewidth I', (3)
splits off from I 0(3) at T . This line originates
from jumps between the two potential wells above
the temperature T*. This interpretation is cor-
roborated by the fact that 1,(3) coincides with the
value of I'/2+ 1/7 (T), where T(T) is the mean
first passage time between the wells, "

7.(T)=2 f dx[DPo(x)) '[ f dyP0(y)]'. (ll)
Xo

This result identifies the transition temperature
T* as the temperature at which 7(T) equal. s 2/I".
Obviously only at this temperature can the reso-
nant scattering process begin to detect the inter-
well transitions. The third linewidth I',(3) is
actually due to relaxation processes in one well
as this width is also found in a two-line spectrum
of a single potential well. Figure 2(b) demon-
strates the behavior of the two-line representa-
tion. This representation reproduces accurately
the contribution of the natural line as described
by the three-line representation and around tem-
perature T~ interpolates between the large third
linewidth I',(3) and the emerging second linewidth
1,(3).

In the case of more complicated potentials a
description in terms of more than three lines
may be necessary. For example in a multistable
potential with M minima, M+1 lines provide an
accurate description. " In this case, I',(M i1)
= I'/2. holds. However, if the accuracy of spec-
tral data is not sufficient to fit more than three
Lorentzians, one may wish, in accordance with
the quality of the available data, to limit the algo-
rithm to only three lines as well. In such a case
one may determine for example I',(3) & I'/2 in-
dicating that lines with widths close to that of the
natural line are not resolved.

However, the algorithm prevents one also from
choosing too many lines. For example, if one
considers 1(~) for a freely diffusing Mo'ssbauer
atom an exact calculation yields a single Lorentz-

ian of width I /2+k'D. Application of our algo-
rithm yields the exact Lorentzian in a one-line-
fit approach. An attempt to fit more lines fails
since in this case Eqs. (10) are ill conditioned.
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